

Thursdays Webinars

Challenges in the Management of HFE-related Hemochromatosis

Graça Porto

Coordinator of the subnetwork: Hemochromatosis and other disorders of iron metabolism and heme synthesis

Centro Hospitalar Universitário de Santo António (CHUdSA)

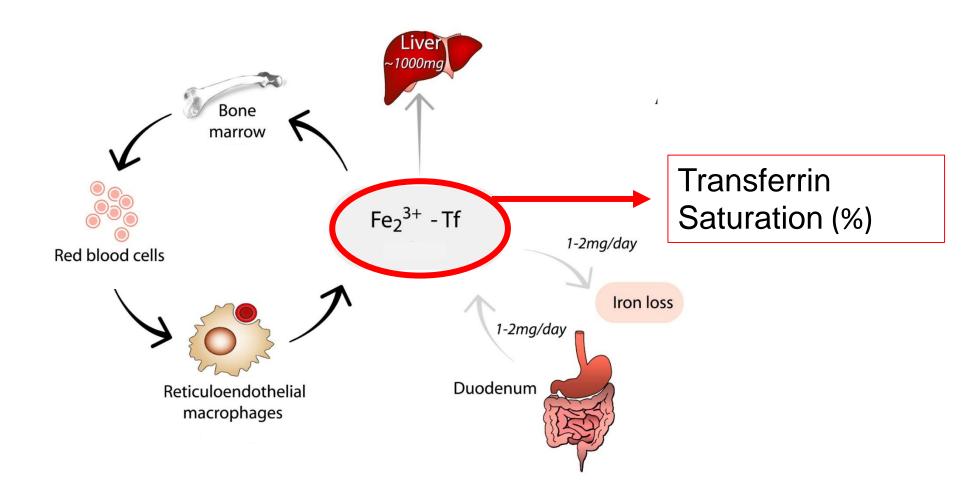
Centro de Genética Preditiva e Preventiva (CGPP/IBMC)

Porto— Portugal

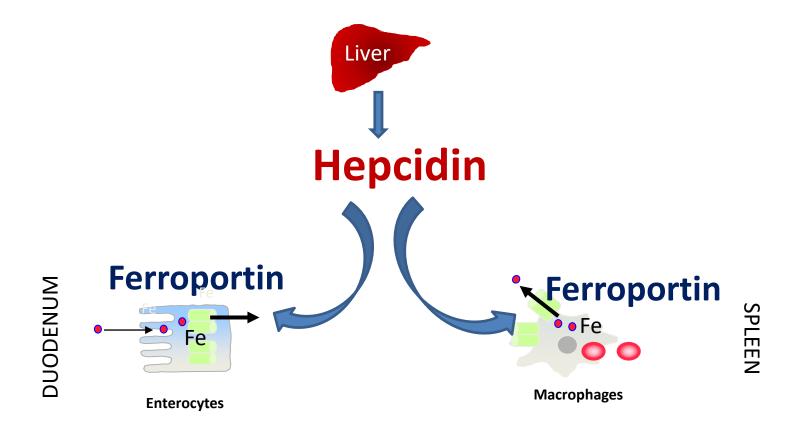
11th April 2024

Nothing to Declare

Network
 Hematological
 Diseases (ERN EuroBloodNet)

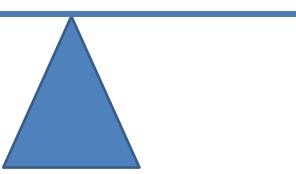

- 1. INTRODUCING THE PHYSIOPATHOLOGY OF HEMOCHROMATOSIS
- 2. UPDATE ON NOMENCLATURE AND CLASSIFICATION
- 3. THE MAIN CHALLENGES IN THE MANGEMENT OF HFE- related HEMOCHROMATOSIS

REGULATION OF IRON HOMEOSTASIS


Hematological
Diseases (ERN EuroBloodNet)

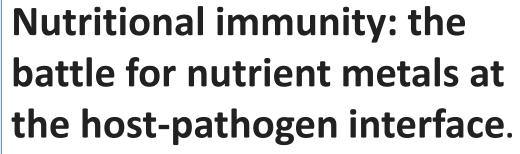
Adapted from: Hentze, Muckenthaler and Andrews, Cell (2004)

The hepcidin-ferroportin axis regulates iron transport to the blood



Hepcidin: maintains the iron equilibrium in the body

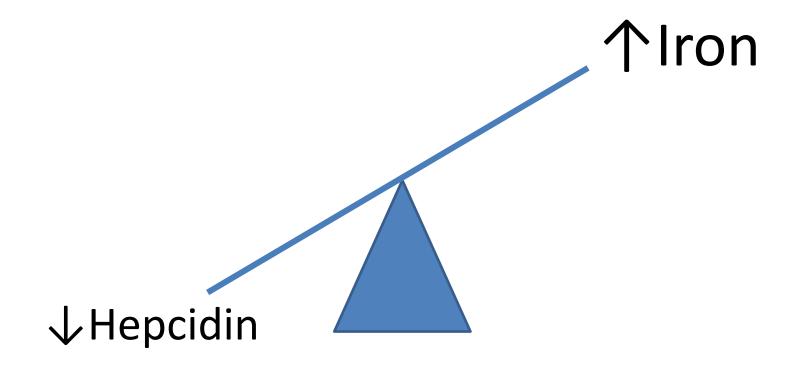
Hepcidin Iron



Hepcidin up-regulation decreases serum iron levels

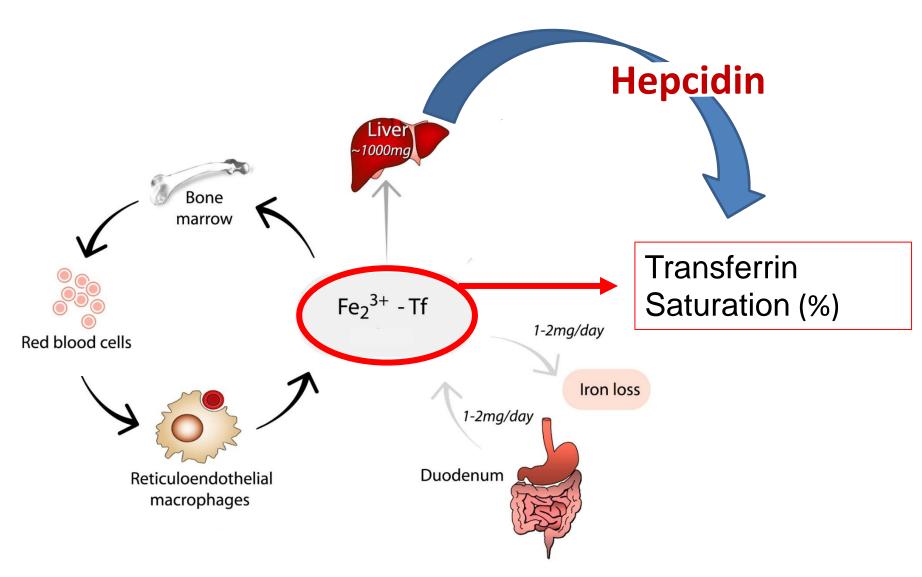
↑Hepcidin

Murdoch CC, Skaar EP. Nat Rev Microbiol. 2022 Nov;20(11):657-670.

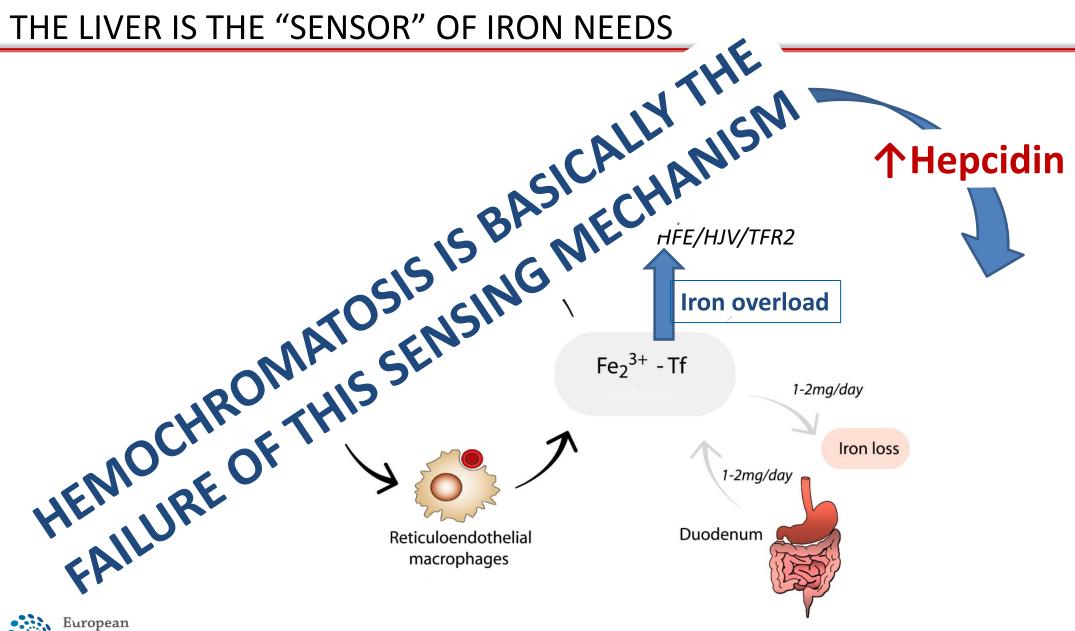


Thursdays Webinars

Hepcidin down-regulation increases serum iron levels

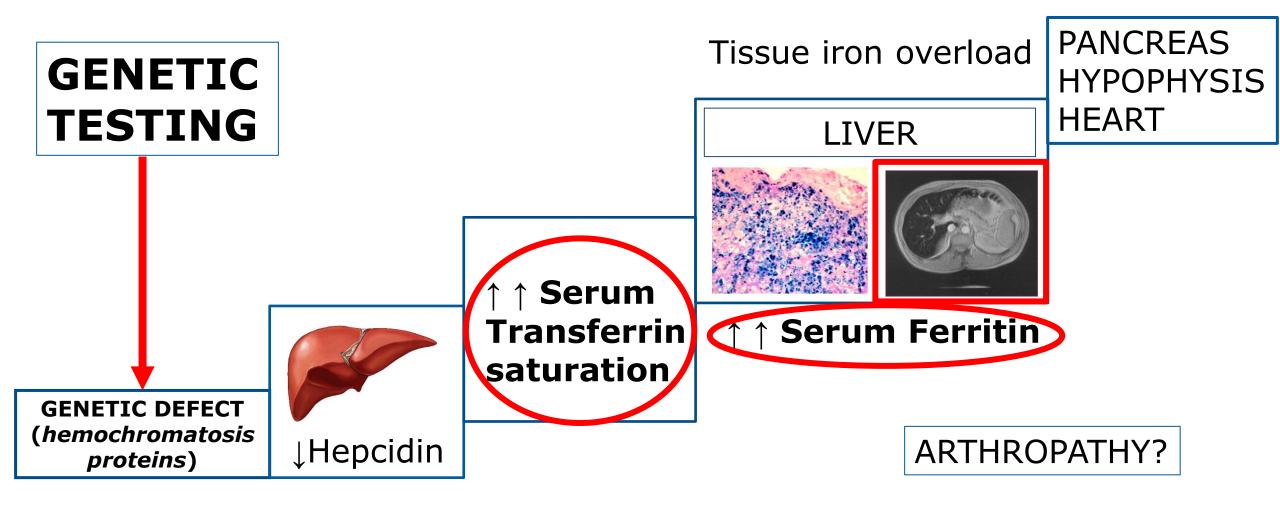


REGULATION OF IRON HOMEOSTASIS



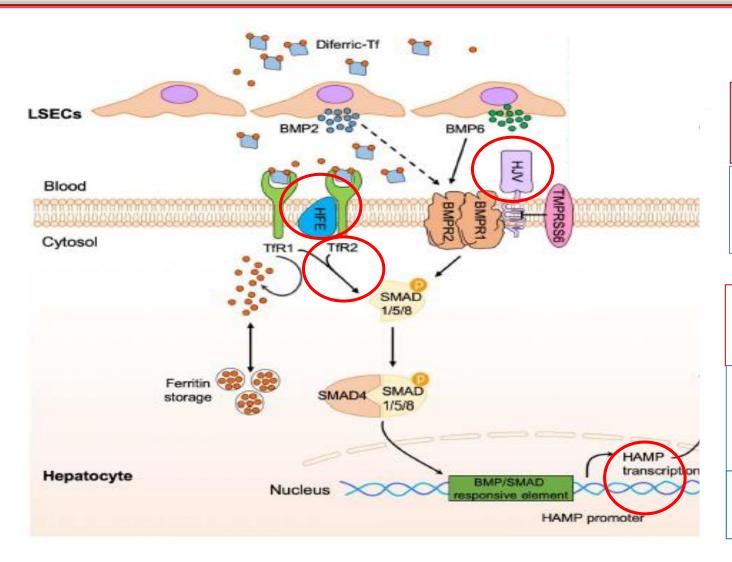
Adapted from: Hentze, Muckenthaler and Andrews, Cell (2004)

THE LIVER IS THE "SENSOR" OF IRON NEEDS



Hematological Diseases (ERN EuroBloodNet) Adapted from: Hentze, Muckenthaler and Andrews, Cell (2004)

SUMMARY OF THE PATHOPHYSIOLOGY OF HEMOCHROMATOSIS



Network
 Hematological
 Diseases (ERN EuroBloodNet)

HEMOCHROMATOSIS CLASSIFICATION (Girelli et al. Blood. 2022 May 19;139(20):3018-3029)

HFE-related

>90%

p.C282Y/p.C282Y

p.C282Y/rare HFE mutations

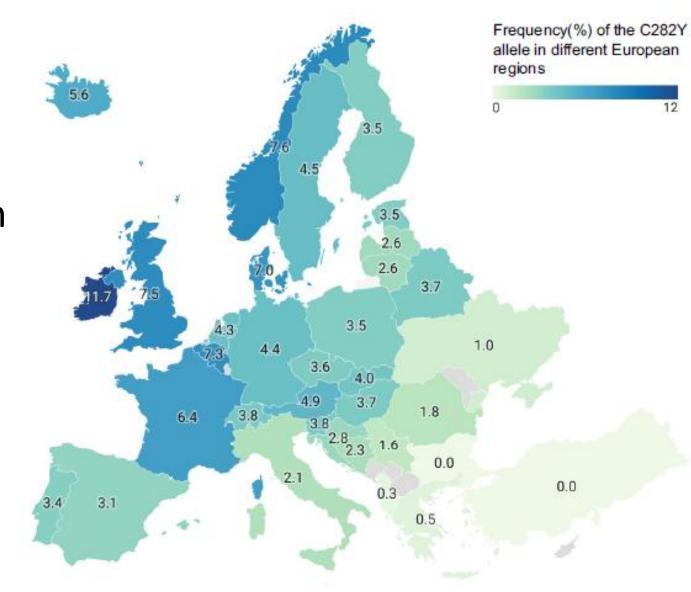
Non-HFE-related:

Transferrin receptor 2 (*TFR2*)
Hemojuvelin (*HJV*)
Hepcidin (*HAMP*)

rare

Ferroportin (FPN)
Digenic

Extremely rare


Thursdays Webinars

HFE-related hemochromatosis p.C282Y/p.C282Y

Trequency of people at risk in northern european countries

↓ Penetrance of severe clinical manifestations of the disease

Diseases (ERN EuroBloodNet)

From: EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022 May 30:S0168-8278(22)00211-2.

ORPHA:648569 (Group of disorders) Non-HFE-related hemochromatosis

ORPHA:225123 (Disorder) TFR2-related hemochromatosis

ORPHA:79230 (Disorder) HJV or HAMP-related hemochromatosis

ORPHA:647834 (Disorder) <u>SLC40A1-related hemochromatosis</u>

ORPHA:648581 (Disorder) <u>Digenic hemochromatosis</u>

ORPHA:465508 (Disorder) Symptomatic form of HFE-related hemochromatosis

Thursdays Webinars

THE MAIN CHALLENGES IN THE MANAGEMENT OF HEMOCHROMATOSIS

(how to detect, diagnose and treat earlier?)

- ENHANCE CASE DETECTION
- THE QUESTION OF POPULATION SCREENING
- IDENTIFY MODIFIERS OF CLINICAL PENETRANCE
- TREATMENT OPTIONS

ENHANCE CASE DETECTION

Adults presenting with any of the following should be screened for haemochromatosis:

- Fatigue, arthralgias
- Family history of haemochromatosis
- Chronic liver disease, primary liver cancer
- Arthritis, osteoporosis
- Diabetes

Iron panel:

- Transferrin saturation (TSAT)
 (serum iron + transferrin or TIBC)
- Serum ferritin

HFE genotyping for p.C282Y

Unexplained persistently elevated

EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022 Aug;77(2):479-502.

Thursdays Webinars

Published in final edited form as:

Hepatology. 2012 June; 55(6): 1722-1726. doi:10.1002/hep.25538.

Probability of C282Y homozygosity decreases as liver transaminase activities increase in participants with hyperferritinemia in the HEIRS Study

Paul C. Adams¹, Mark Speechley², James C. Barton³, Christine E. McLaren⁴, Gordon D. McLaren⁵, and John H. Eckfeldt⁶

ENHANCE CASE DETECTION

Adults presenting with any of the following should be screened for haemochromatosis:

- Fatigue, arthralgias
- Family history of haemochromatosis
- Chronic liver disease, primary liver cancer
- Arthritis, osteoporosis
- Diabetes

Iron panel:

- Transferrin saturation (TSAT)
 (serum iron + transferrin or TIBC)
- Serum ferritin
- Full blood count + reticulocytes (to exclude anaemia and red cell disorders)

HFE genotyping for p.C282Y

Unexplained persistently elevated

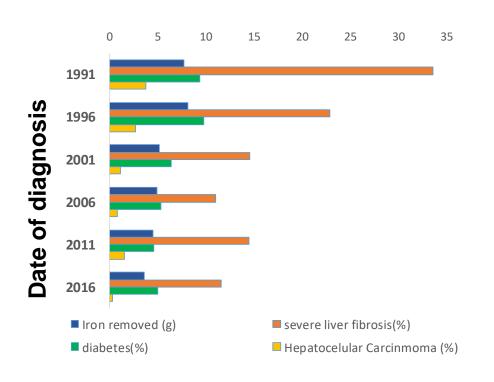
EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022 Aug;77(2):479-502.

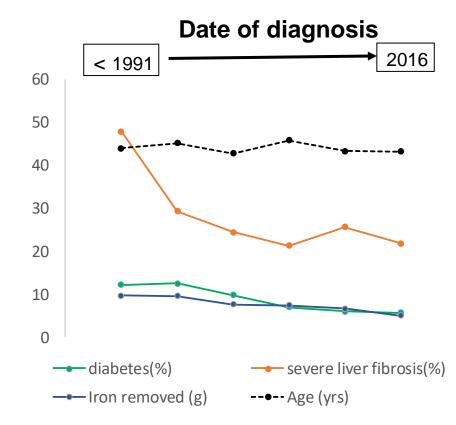
for rare or low prevalence

Network
 Hematological
 Diseases (ERN EuroBloodNet)

Thursdays Webinars

Inform and recommend family screening in all adult first degree family members of patients homozygous for the C282Y variant.


EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022 Aug;77(2):479-502.



Reduced phenotypic expression in genetic hemochromatosis with time: role of exposure to non-genetic factors

Deugnier et al, J Hepatol. 2019 Jan;70(1):118-125.

THE MAIN CHALLENGES IN THE MANAGEMENT OF HEMOCHROMATOSIS

(how to detect, diagnose and treat earlier?)

- ENHANCE CASE DETECTION
- THE QUESTION OF POPULATION SCREENING
- IDENTIFY MODIFIERS OF CLINICAL PENETRANCE
- TREATMENT OPTIONS

Hematological
Diseases (ERN EuroBloodNet)

Consensus on population screening for HFE-Hemochromatosis: a Delphi study

1. Should population screening for hemochromatosis be recommended?

2. Which tests should be used?

3. At what age should population screening and follow-up occur?

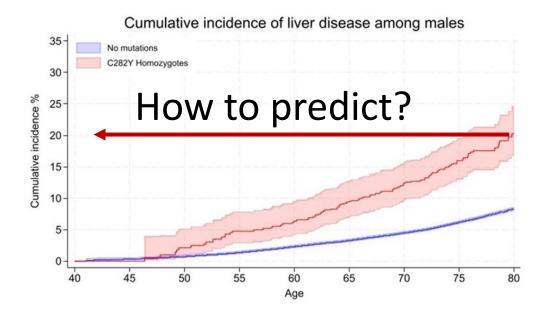
(Consensus defined as ≥75% agreement on each of these key questions)

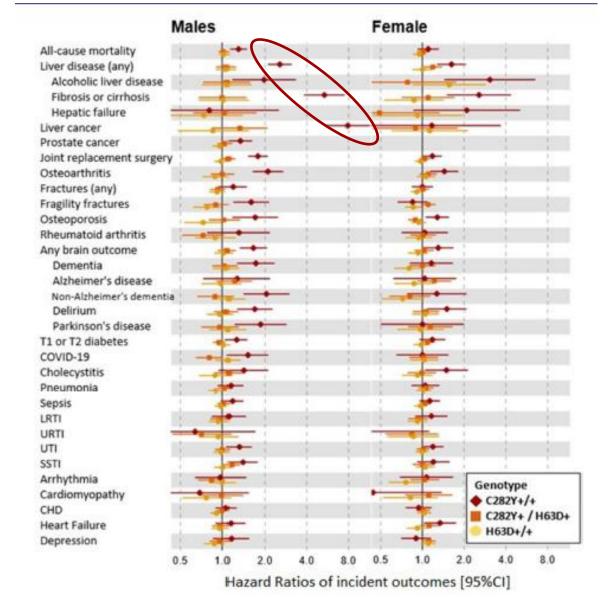
We achieved consensus for screening for *HFE*-related hemochromatosis in high prevalence populations (>0.4%) before the age of 30 years

BUT NO CONSENSUS ON METHOD

BIOCHEMICAL (TRANSFERRIN SATURATION)? – UNSPECIFIC

GENETIC (p.C282Y variant)? – LOW CLINICAL PENETRANCE





BMJ Open HFE genotypes, haemochromatosis diagnosis and clinical outcomes at age 80 years: a prospective cohort study in the UK Biobank

Mitchell R Lucas, ¹ Janice L Atkins ⁰, ¹ Luke C Pilling ⁰, ¹ Jeremy D Shearman, ² David Melzer ¹

for rare or low prevalence complex diseases

Network
 Hematological
 Diseases (ERN EuroBloodNet)

THE MAIN CHALLENGES IN THE MANAGEMENT OF HEMOCHROMATOSIS

(how to detect, diagnose and treat earlier?)

- ENHANCE CASE DETECTION
- THE QUESTION OF POPULATION SCREENING
- IDENTIFY GENETIC MODIFIERS OF CLINICAL PENETRANCE
- TREATMENT OPTIONS

Hematological
Diseases (ERN EuroBloodNet)

What modifies the clinical penetrance of hemochromatosis?

Received: 11 March 2022

Revised: 11 May 2022

Accepted: 11 May 2022

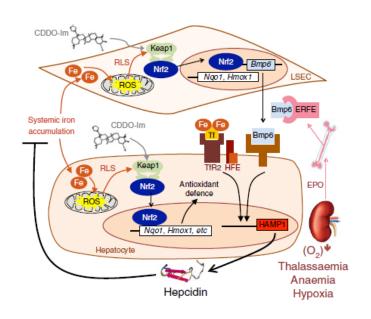
DOI: 10.1002/hep.32575

ORIGINAL ARTICLE

Genetic modifiers of penetrance to liver endpoints in *HFE* hemochromatosis: Associations in a large community cohort

Luke C. Pilling | Janice L. Atkins | David Melzer

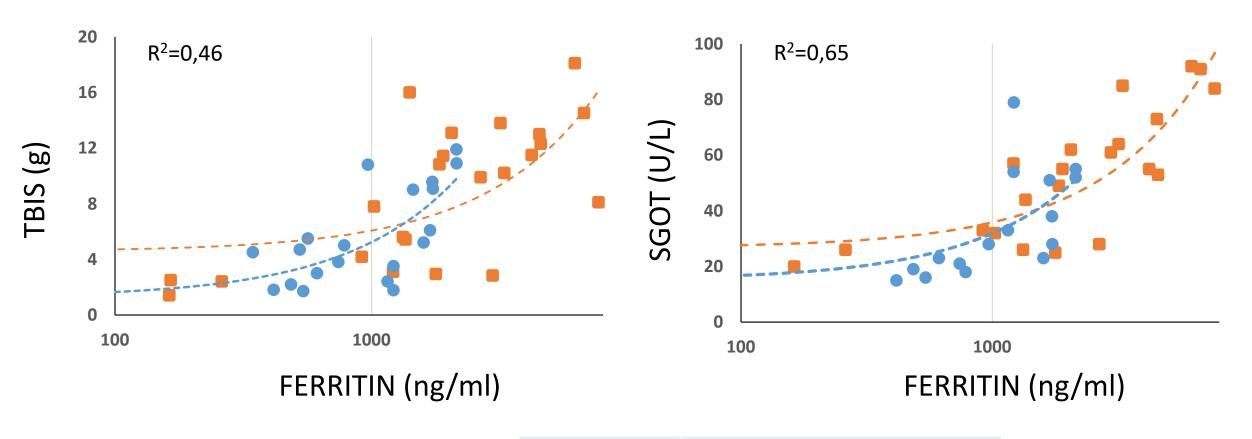
"Overall, the findings show that HFE p.C282Y homozygote penetrance to clinical disease in a large community cohort was modified by population—derived polygenic risk scores for iron measures and for HH-related conditions"



Thursdays Webinars

What modifies the clinical penetrance of hemochromatosis?

NRF2 senses toxic iron excess and regulates systemic iron levels via BMP6/hepcidin



Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, Armitage AE, Mehta H, Wideman S, Santos AG, Santos-Gonçalves A, Morovat A, Hughes JR, Soilleux E, Wang CY, Bayer AL, Klenerman P, Willberg CB, Hartley RC, Murphy MP, Babitt JL, Ponka P, Porto G, Drakesmith H. 2019 **Nat Metabol**

for rare or low prevalence complex diseases

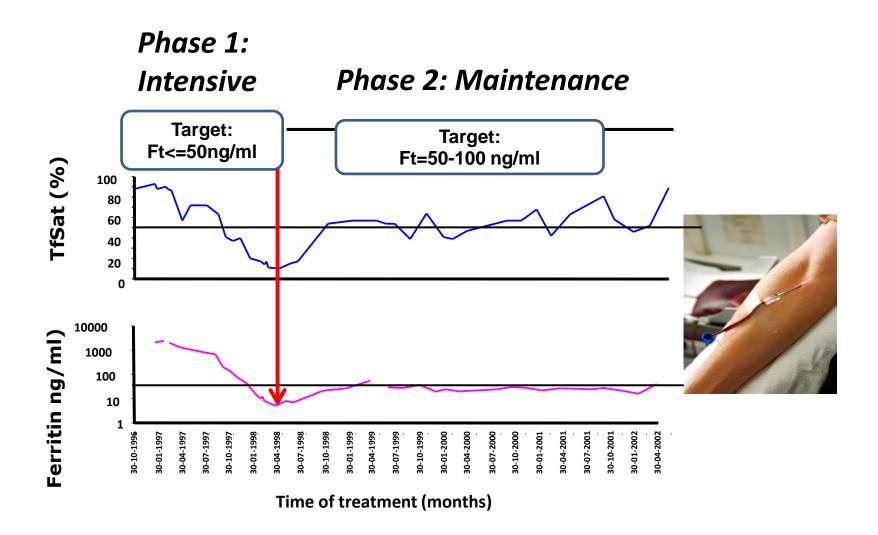
Thursdays Webinars

Frequency of cirrhosis 5/18 (25%) NRF2 rs35652124 SNP genotype 2/25 (5%) TC/CC

complex diseases

THE MAIN CHALLENGES IN THE MANAGEMENT OF HEMOCHROMATOSIS

(how to detect, diagnose and treat earlier?)


- ENHANCE CASE DETECTION
- THE QUESTION OF POPULATION SCREENING
- IDENTIFY MODIFIERS OF CLINICAL PENETRANCE
- TREATMENT OPTIONS

THE HEMOCHROMATOSIS TREATMENT:

EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022 Aug;77(2):479-502.

OPEN ACCESS

EDITED BY

Jukka Partanen, Finnish Red Cross Blood Service, Finland

REVIEWED BY

Mikko Arvas, Finnish Red Cross Blood Service, Finland Graça Porto,

University of Porto, Portugal

*CORRESPONDENCE Laura Infanti

☑ Laura.infanti@usb.ch

RECEIVED 29 December 2023 ACCEPTED 07 March 2024 PUBLISHED 19 March 2024

CITATION

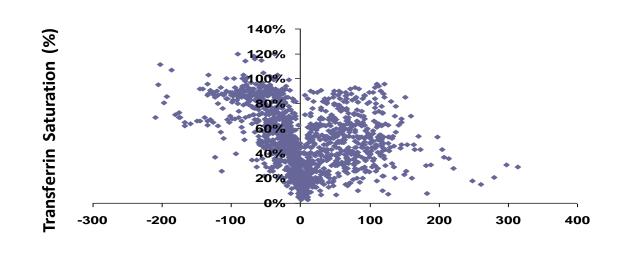
Infanti L, Leitner G, Moe M, Pehlic V, Cattaneo M, Benkert P, Holbro A, Passweg J, Worel N and Buser A (2024) Blood donation for iron removal in individuals with HFE mutations: study of efficacy and safety and short review on hemochromatosis and blood donation.

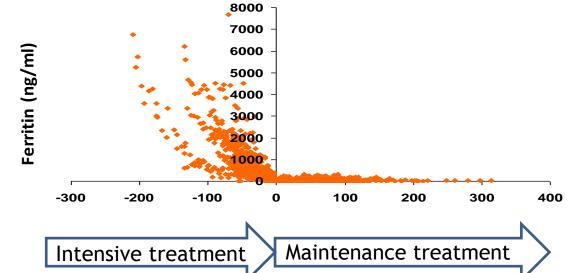
Front. Med. 11:1362941.

doi: 10.3389/fmed.2024.1362941

Blood donation for iron removal in individuals with HFE mutations: study of efficacy and safety and short review on hemochromatosis and blood donation

Laura Infanti^{1,2*}, Gerda Leitner³, Morten Moe⁴, Vildana Pehlic¹, Marco Cattaneo⁵, Pascal Benkert⁵, Andreas Holbro^{1,2}, Jakob Passweg², Nina Worel⁶ and Andreas Buser^{1,2}


¹Regional Blood Transfusion Centre Swiss Red Cross Basel, Basel, Switzerland, ²Division of Hematology, University Hospital, University of Basel, Basel, Switzerland, ³Austrian Red Cross, Vienna, Austria, ⁴Unit of Medical Biochemistry, Division of Diagnostics and Technology, Akershus University Hospital, Akershus, Norway, ⁵Clinical Trial Unit, Department of Clinical Research, University and University Hospital Basel, Basel, Switzerland, ⁶Department for Transfusion Medicine and Cell Therapy, Medical University Vienna, Vienna, Austria



MONITORING HEMOCHROMATOSIS TREATMENT:

Network
 Hematological
 Diseases (ERN EuroBloodNet)

THE HEMOCHROMATOSIS TREATMENT:

THE COVID19 LOCKDOWN OPPORTUNITY

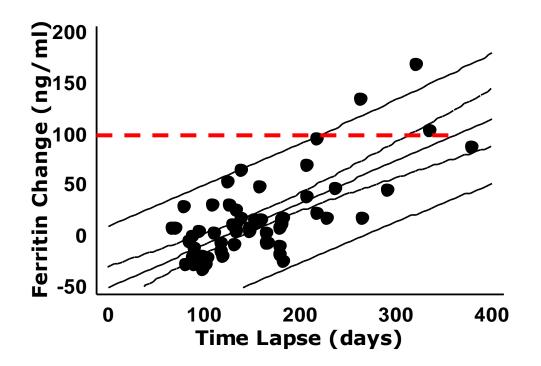
Hospital Lockdown March 2020

Resume Day Hospital activity May 2020

End of study Feb 2021

Calculated TIME LAPSE (no of days from last phlebotomy)

Coutinho et al. Hemasphere. 2022 Aug 23;6(9):e770.



THE HEMOCHROMATOSIS TREATMENT:

Ferritin increases in hemochromatosis subjects after discontinuing their regular maintenance treatment at a predicted rate of 100ng/ml per year

NOVEL THERAPEUTIC TARGETS?

Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools. Blood. 2018;131(16):1790-1794

Hepcidin				
agonists	Company	Drug	Target	Clinical trials
Class 1: hepcidin mimetics	University of California, Los Angeles	MHs (PR65, PR73, M009, M012)	Ferroportin	Validated in preclinical studies
	La Jolla Pharmaceutical Company	LJPC-401 (hepcidin formulation)	Ferroportin	Phase 1: no toxicity reported; expected hypoferremia observed
	Protagonist Therapeutics	PTG-300	Ferroportin	Phase 1: no serious adverse events reported expected hypoferremia observed
Class 2: stimulators of hepcidin production	Ionis Pharmaceuticals	Tmprss6-ASO	Tmprss6	Phase 1 ongoing
	Alnylam Pharmaceuticals	Tmprss6-siRNA	Tmprss6	Validated in preclinical studies
Class 3: ferroportin inhibitors	Vifor Pharma	VIT-2763	Ferroportin	Phase 1 planned in 2018

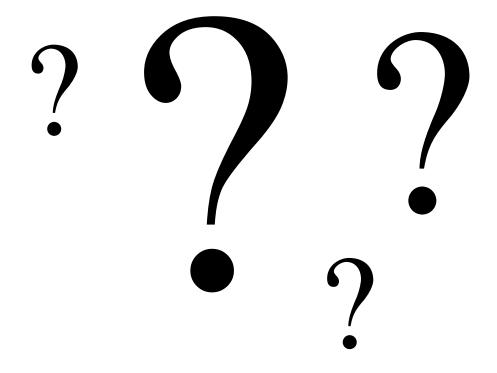
Network
 Hematological
 Diseases (ERN EuroBloodNet)

"The major CHALLENGES in the management of HFE-related hemochromatosis"

- 1. TO HARMONIZE AND IMPLEMENT AMONG CLINICIANS A CORRECT DIAGNOSIS, CLASSIFICATION AND TREATMENT OF HEMOCHROMATOSIS
- TO IMPLEMENT STRATEGIES OF POPULATION SCREENING ACCORDING TO NATIONAL REGULATIONS AND DEMONSTRATE RESULTS
- 3. PROMOTE RESEARCH

"THE RESEARCH TOPICS"

- 1. PATHOGENESIS OF ARTHROPATHY (implications for treatment)
- 2. MODIFIERS OF CLINICAL PENETRANCE (implications for screening strategies)
- 3. FUNDAMENTAL RESEARCH: HFE and iron sensing


Haemochromatosis patients' research priorities: Towards an improved quality of life. Romero-Cortadellas L, Venturi V, Martín-Sánchez JC, Toska K, Prince D, Butzeck B, Porto G, Milman NT, Committee HS, Sánchez M. Health Expect. 2023 Dec;26(6):2293-2301

When analyzing patients' preferences in HC research, they selected *Conduct research into arthritis and joint problems* as the top priority in the hemochromatosis field (45.3%), closely followed by *Promote knowledge about hemochromatosis among medical doctors* (42.5%) and the third most voted choice, *Investigate new or alternative treatments for hemochromatosis* (30%).

for rare or low prevalence complex diseases

Network
 Hematological
 Diseases (ERN EuroBloodNet)